
Second International Conference on IoT, Social, Mobile, Analytics & Cloud in 

Computational Vision & Bio-Engineering (ISMAC-CVB 2020) 
 

567 

Optimization of CNN model with hyper parameter tuning for enhancing 

sturdiness in classification of histopathological images 
 

Anil Johny, Dr. K. N. Madhusoodanan, Dr. Tom J Nallikuzhy 

Research Scholar, Department of Instrumentation, CUSAT, Cochin, Kerala, India  

Professor, Department of Instrumentation, CUSAT, Cochin, Kerala, India 

Dept. of Anatomy, SN Institute of Medical Science(SNIMS), Ernakulam, India 

aniljohny@gmail.com 

 

ABSTRACT: The field of pathology has advanced so rapidly that it is now possible to produce whole slide images  

(WSI) from glass slides with digital scanners producing high-quality images. Image analysis algorithms applied to such 

digitized images facilitate automatic diagnostic tasks whilst assisting a medical expert. Successful detection of malignancy 

in histopathological images largely depends on the expertise of rad iologists, though they sometimes disagree with their 

decisions. Computer-aided diagnosis provides a platform for a second opinion in diagnosis, which can improve the 

reliability of an expert's opinion. Deep learning provides promising results compared to the conventional approach that 

relies on manual extract ion of features which is time -consuming and  labor-intense. Due to the huge size, whole slide 

images are converted into patches and trained using a Convolutional Neural Network (CNN), a variant of the deep learning 

model for images. Experimental results show that the proposed native model achieved pat ch wise classification accuracy of 

92.8% and area under ROC curve 0.97 which is close to the values while comparing with the existing pre -trained models. 
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1. INTRODUCTION 

Breast cancer is the most common invasive cancer in women and the second main cause of cancer death in women, after 

lung cancer [1]. Ultrasound, low-dose X-ray (mammogram), CT, MRI are non-invasive imaging techniques capable of 

producing 2D and 3D images of the breast. Histopathology which is an invasive method involves different surgical steps 

(biopsy) for microscopical investigation of tissue. Images obtained from pathological t issue provide histopathological 

images commonly referred to as Whole Slide Images (WSI). Histopathology image analysis is a gold standard for cancer 

recognition and diagnosis. Dig ital histopathology image analysis can help pathologists diagnose tumour subtypes, alleviate 

the workload of pathologists , and also improves the overall efficiency of routine diagnostic workflow [2]. The d iagnosis 

and treatment in the early stages are essential to prevent the proliferation of the d isease and reduce morb idity. Over the past 

decade, a dramatic increase in  computational power and improvement in  deep learning, especially Convolutional Neural 

Network (CNN)[3], has allowed the development of computer-assisted analytical approaches to the medical image analysis 

field, including  h istology images. CNN is a state-of-the-art technique for classificat ion problems when the input consists of 

high-dimensional data such as WSI. Microscopically, cancer cells have distinguishing histo logical features. The nucleus is 

often large and irregular, and the cytoplasm may also display Atypia which shows clear structural differences between 

diseased tissues and normal t issues. There are many previous attempts to extract handcrafted feature representations, 

involving the labor-intense process. Due to the heterogeneous nature of breast cancer cells pathologist inspects a large 

number of tumour tissue slides which introduces different types of error in analysis. Contrarily to the hand -crafted feature 

extraction methods, CNNs learn  features directly from the histopathology images. Moreover, global feature extraction 

allows the CNN model to extract more hidden features from the images  [4], and classify them into a different class. Deep 
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learning can be utilized to train a model and learn  from labeled images, subsequently use the model to predict unlabeled 

histology images.   

The methods based on handcrafted features[5] which are based on segmentation from selected areas(ROI) subsequently 

feeds different sets of features into traditional classifiers for classifying into benign or malignant class. A baseline method 

in [5] suggests a dataset that consists of histopathology images stained with Hematoxylin and Eosin (H&E) and achieved 

accuracy ranges from 80% to 85% for different magnification factors. Patch-based training and classification were used in 

[6] where the patch sizes are (32x32) and (64x64) using a sliding window strategy with a 50% overlap. The reported 

accuracies are 83.3% and 82.8% for patient-level and image-level respectively for the 200x magnification factor. In [7] 

authors suggest another method, in -between hand-crafted and task-specific CNN methods which reuses the pre-trained 

model to ext ract features and achieved an accuracy of 86.3% at the patient level for 200x magnification factor. A single 

task CNN model with a prediction on malignancy and image magnification was suggested by [8] and achieved an average 

recognition rate of 83.25% for the classification task. In [9] Patch-based sampling from WSI for the detection of invasive 

ductal carcinoma (IDC) the authors was able to achieve a balanced accuracy of 84.23%.  

Whole slide images (WSI) based classification techniques encompass several roadblocks such as high implementation cost 

and insufficient p roductivity for high-volume clinical inspection and difficulty in retrieving very h igh-resolution images. 

Train ing CNN model using WSI requires a large memory footprint for computation while training using downsampled WSI 

may result in losing some distinctive features. Benign and malignant cells are differentiated by the various structural 

information such as the shape and size of nuclei and other information depending on different stages of metastases. 

1.1. Characteristic of Benign neoplasms 

A benign tissue appears like normal cells from which it originated, and has a slow rate of g rowth. Benign neoplasms do not 

invade encompassing tissues and they do not metastasize. The benign characteristics include slow growth, similarity to the 

tissue of origin, circumscription, lack of invasion, and absence of metastases.  

1.2. Characteristics of Malignant neoplasms 

A malignancy consists of cells that appear less like the normal cells of orig in. It has a high rate of pro liferat ion and can 

invade and metastasize rapid ly. Malignant neoplasms derived from epithelial cells and those derived from mesenchymal 

cells are known as carcinomas and sarcomas respectively. The characteristics of malignant neoplasms include a rapid 

increase in size, less differentiation, a tendency to invade close tissues, and the ability to metastasize to distant tissues. 

Upon inspection, a medical expert looks for certain  traits of atypia in  WSI which are characterized by certain abnormalit ies 

that distinguish healthy and unhealthy tissues. Training a CNN model using whole slide images (WSI) directly from any 

database using CNN encounters the following limitations. Firstly the size of WSI is large (1024x1024) which cannot be fed 

to deep learning models directly. Second, WSI contains regions that are neither malignant nor benign, referred to as 

parenchymal t issues, which must be removed from images or it can be included in benign class optionally. Th ird, the 

variation in depth of staining between different slides affects training performances largely. In  this work, a native CNN 

model is proposed and trained using the patches from the standard database PCam [10], which is task-specific and provides 

competitive results. A trade-off between training t ime and better accuracy is achieved by fine-tuning model 

hyperparameters.   
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(a) Benign patch; (b) Malignant patch; (c) Adipose patch  

Fig. 1 – Different patches from single WSI image (best viewed in color) 

Fig. 1 represents benign, malignant, and adipose patches from a single WSI image whose label is known, and patch level 

labels are not availab le. Considering the above constraints, a patch-based dataset PCam is used for our experiments to train 

all the models.  

The remaining sections of the article is organized  as follows: Section  II portrays dataset and evaluation metrics. Section III 

describes the methodology followed in the work. Section IV d iscusses the experimental results. Section V concludes with 

various insights to further research.                                                          

2. DATASET AND EVALUATION METRICS 

Evaluation metrics used in the work are listed in Table 1.  AUC value of the ROC curve is used for evaluating a binary 

classification model where True Positive Rates (TPR) is plotted against False-Positive Rates (FPR) for d ifferent thresholds. 

It is also used here to find the best model which has good prediction performance.  

Table 1 – Evaluation metrics used 

Metrics  Definition Range  

Accuracy      

 
     

           
  

(0,1) 

Precision              (0,1) 

Recall   

        

    

(0,1) 

F1-score 
     

     

     
 

(0,1) 

   

 

Often it is cumbersome to separate the background from whole slide images as it is time-consuming and requires expert 

annotations. For example, when a whole slide image labelled as malignant is divided into patches, it consists of images of 

both the malignant portion, which  is our area of interest, as well as image patches of background and adipose tissues which 

are now under the malignant label. This creates error while training and classificat ion unless it is separated, as the whole 

image is categorized  into one main class, i.e. malignant. The background images which are either normal or adipose tissues 

if included in the same class where the image belongs inherently affects model train ing and loss will be very high. 

Removing the background patches manually requires careful expert annotation of the Area Of Interest (AOI) in WSI and 

removal by cropping or any segmentation algorithm.  Th is is inevitable to train and optimize the patch classifier model 

through hyper-parameter tuning, standard database is crucial as the impact of false positives will get eliminated in this step. 

PCam repository contains 400 H&E stained WSIs of sentinel lymph node sections. The slides  in the database were acquired 
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and digitized at 2 different centers using a 40x objective (pixel resolution of 0.243 microns) which is then under-sampled at 

10x to increase the field o f view [10]. Train / test split from the Camelyon-16 challenge is also followed in the database, 

and further hold-out 20% of the train WSIs for the validation set. A novel method is proposed to train a patch classifier 

(PCF) model using PCam repository which can separate background information from labeled WSI, thus separating patches 

containing malignancy and normal patches.  

3. METHODOLOGY 

 

 

 

 

 

 

Fig.2. Block diagram of the proposed method 

Figure 2 represents the block diagram of the proposed patch-based training network. Model parameters such as the number 

of hidden layers, network activation function are defined beforehand by heuristics. Since the available pre-trained models 

require a large memory footprint and computational complexity, a native CNN model is proposed for the work. The 

proposed work has two stages. The primary stage focus is to replace the random weights and initializes in which the results 

in vanishing or exp loding the gradient. In this stage, the range of hyper-parameter values and consistency among several 

models are also estimated as a prerequisite for the next stage which  cannot be monitored together for optimal settings. This 

stage eliminates the need for parameter in itializat ion and estimation by trial and error method which in -turn hastens 

subsequent training stages by converging to local minima within a reasonable time. In the secondary stage, training is 

performed by selecting the learning rate, batch size and several patches by analyzing the results in the first stage of training 

from different models and well within the range. This supports the fine-tuning process of training by setting the hyper-

parameters t ill the accuracy is improved. The optimal learn ing rate for this stage is found to be between 0.01 and 0.001 

from Fig. 3c. Th is stage surpasses the limitations of gradients that vanishes and is trapped at local minima during training 

which is the effects of very high learning rates. Min i-batch gradient descent with default values is selected in both stages 

since it divides the training set into smaller batches and updates the model parameters for each iteration. The optimizer 

Stochastic Gradient Descent(SGD) [11] – [13] is also implemented as it  estimates the error g radient for the model from the 

training dataset and updates the weights of the model using a back-propagation algorithm with momentum set to the default 

value. The two stages are performed separately with the same loss functions.    

3.1 CNN model architecture 

The input layer of the CNN model consists of 96x96 RGB square patches which are preprocessed and augmented before 

training using data-generator in Keras[14], an open-source neural-network library written in python. There are three main 

layers in the proposed CNN arch itecture namely convolut ional layer, pooling layer, and fully connected layer. Table 2 

shows the detailed architecture of various models considered. There are three convolution layers in the model which  extract 

the local and global features of images in  the training set. The kernel scans through the input data and extracts the features 

in strides which is the number of steps a kernel takes each time it hovers over the input data. The activation function used 

for all convolutional layers are ReLU [15] with               and Softmax for top layers[16]. For all the pooling layers 

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=3735831

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

wed



Second International Conference on IoT, Social, Mobile, Analytics & Cloud in 

Computational Vision & Bio-Engineering (ISMAC-CVB 2020) 
 

571 

the stride is set to 1x1 and it is found that it works better than 2x2 in terms of performance. Max-pooling layers are 

introduced to reduce dimensionality and computational complexity using downsampling which affects the model 

performance otherwise. Flattening is applied before dense layers  which are fu lly  connected layers used to process the 

informat ion availab le from the pooling layers using a soft-sigmoid function to provide the classifier output. Two fully 

connected dense layers with one output perform the classification whereas convolut ional layers perform feature ext raction. 

Train ing and testing of patches are implemented in  python3  and the model is saved as '$saved model.h5$' format so that it 

can be loaded in a system with a lower configuration and optimized  for classificat ion of patches which in turn facilitates 

whole image classification. It is worth mentioning that the size of saved model weights is well below 10 MB. Data 

augmentation [16] is done, which generates new data from original data, to suffice the size of input train ing d ataset samples 

and thereby increasing the performance of deep neural networks. Nat ive model performance improves with  various 

combinations of hyper-parameters for task-specific implementations. 

 

Table 2 – Detailed architecture of models tested 

Models Input 

shape 

Conv1  Conv2   Conv3  Dense 

1 

Dense2 Output Parameters 

Model#1 96x96x3 9x9,30,3x3 4x4,100,1x1 3x3,100,1x1 200 200 1 451791 

Model#2 96x96x3 7x7,30,3x3 3x3,100,2x2 3x3,100,2x2 100 100 1 376391 

Model#3 96x96x3 10x10,30,4x4 4x4,100,1x1 2x2,100,1x1 300 200 1 511891 

Model#4 96x96x3 8x8,30,2x2 5x5,100,2x2 5x5,100,2x2 200 50 1 421491 

         

 

3.2 Model parameter selection 

Optimal model hyper-parameters are obtained by varying different model parameters and analyzing its impact on the 

accuracy of each model. This main step is performed in the primary phase.  Large batch size is often constrained by GPU 

memory availability for computation. For a batch size o f 32, the model performs an update for every min i-batch training 

example thereby reducing the variation of parameter updates and leads to convergence. 

 

3.3 Training of CNN model 

In the primary stage, the model is trained from scratch based on the prefixed model parameters with a test-train split of 

80:20 and the same rat io is followed in the second stage also for consistency. The model weights obtained from the primary 

phase is reused in the second phase to reduce training time. Train ing of the native model is performed  by setting the 

obtained hyper-parameters mentioned in Section 3.2 to optimize the model. The optimized model will be well suited for the 

classification of benign and malignant patches as well as background patches from whole slide images. The model is 

trained for various epochs and the changes in the accuracies are p lotted for d ifferent architectures keeping other parameters 

such as the number of patches, learning rate, and batch size fixed. Figure 4 and Fig. 3c show the variation in accuracy for 

different architectures while changing epochs and learning rates respectively, keeping other parameters unchanged. 
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(a) Accuracy changes for varying number of patches; (b) Accuracy comparison for different batch sizes; 

(c) Accuracy comparison for different learning rates  

Fig. 3 – Performance analysis of various models  

 

 

             Fig. 4 – Model performances at different epochs 

Increasing the number of patches do not contribute much to  the accuracy since the augmentation creates several images 

while training undergoes, by flipping and rotating. Reduction in batch size improves accuracy but the computation time for 

the training process increases drastically. By setting these hyper-parameters a trade-off can be reached between accuracy 

and time required for training.  The learning rate is varied for improving the performance of the model at d ifferent stages of 

training in different models whilst it  updates weights after each step during train ing. The h igh learn ing rate employed in 

CNN model training may  cause over-fitting. The various learn ing rate are implemented in  this work termed  as the constant 

type, time-based, step change, and exponential learning rates as shown in Fig.5.  
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(a) Step decay; (b) Exponential decay 

Fig. 5 – Different learning rate strategies used 

The step size is varied for every 100 epochs in both learn ing strategies and the upper and lower limits of learning  rates are 

0.1 and 0.001 respectively. 

 

                                     ⁄          (1) 

 

Eqn (1) represents the variation in the learning rate with a change in decay.           is the initial learn ing rate and       is 

the amount by which the learning rate,    is reduced after each epoch. 

                             ⁄                                          (2) 

In the above Eqn (2),   is the factor by which  the rate is controlled fo r every t ime epochs drop by   and   is the current 

epoch. For a low value of  , learning rate decay will be fast. 

                                                                              (3) 

In Eqn (3)  the hyper-parameters 'k' and 't' are varied for apply ing different learn ing rates during training. The time-based 

strategy follows a built-in  function in Keras where it decreases the learning rate from the previous epoch by a fixed amount 

and depends on decay. Step-based decay reduces the learning rate after a  fixed  number of epochs and exponential decay 

reduces the learning rate exponentially as epochs increase. 

Different learning strategies are implemented based on Eqn (1), Eqn (2), and Eqn (3). Learn ing rate strategy and 

learning rates are case-specific and are cautiously selected as higher learning rates causes instability in  model training 

whereas more train ing time is required for lower learn ing rates. From the graph, the final accuracy value for the fixed 

learning rate is substantially h igher than other learning rate modalit ies which show suitability fo r subsequent training of 

models. The same learning strategy is followed in the second stage also for better comparison. 

4. EXPERIMENTAL RESULTS AND PERFORMANCE ANALYSIS 

Train ing and validation accuracy of different models are compared  in itially  by varying epochs, batch sizes, learning rates , 

and several patches. Note that only one parameter is varied  at a  time while the remain ing are fixed. Estimat ion of different 

ranges of hyper-parameters and model parameters is obtained from this step which eliminates exhaustive methods like 

random search [17]. Figure 4 shows the variation of accuracy for different models as the epochs are changed. A linear 

relation between the number of epochs and accuracy is observed in a few models which  lack in other models due to 

architectural d issimilarities. Figure 3(a) shows the variation of accuracy for d ifferent models fo r a  varying number of 

patches. The accuracy of models does not improve by increasing the number of patches beyond 40,000. Change in accuracy  

for different models as batch size changes are shown in Fig. 3(b). Model performance for different learning rates is shown 

in Fig.3(c) which infers instabilit ies while the learning rate is high or too low. The response of the model to different 
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learning strategies are evaluated and identified as the best learning modality for the experiment. Figure 6 shows that for a 

fixed learning rate, the accuracy improves while for exponential and step -change learning rate, the curve stagnates as 

training epochs progress. The obtained values of accuracy, precision, recall, f1 score, and AUC before and after tuning are 

listed in  Table 3.  An increase in  accuracy of 3.5% is obtained for various models under test as shown in Fig. 7. Similarly , 

an increase up to 3.6% for precision, 4.5% for recall, and 4.7% for F1-score are observed. The plots in Fig.8 show the 

variation in accuracy, precision, recall, f1-score, and AUC after tuning, for all the models for visual comparison. Figure 9 

shows the ROC curve for all the models.  

 

 

 

 

 

 

 

 

 

Fig. 6. Accuracy curves of single model for different learning strategies  

The performance of the models is analyzed  by plotting the ROC curve which shows the AUC of the model which has the 

highest accuracy. Here variation in FPR is p lotted against TPR for different thresholds. The highest AUC value obtained is 

0.98 which shows the efficiency of the proposed model. The graph shows the capability of p roposed models to differentiate 

benign from malignant patches. The selection of the best model is done by analyzing the different parameters 

aforementioned. 

 

 

Fig. 7 – Accuracy of various models before and after tuning 

 

 

(a) Comparison of precision; (b) Comparison of recall; (c) Comparison of F1-score. 

Fig. 8 – Accuracy of various models before and after tuning 
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Fig. 9. Comparison of ROC curve and AUC for different models  

 

Table 3 – Performance results of various models before and after tuning 

Model  Before tuning  After tuning 

Model 

number 

 Accuracy Precision Recall f1 

score 

AUC Accuracy Precision Recall f1 

score 

AUC 

Model#1 0.8245 0.809 0.821 0.7847 0.9 0.8718 0.8561 0.8445 0.8535 0.94 

Model#2 0.823 0.7865 0.8155 0.7995 0.9 0.8546 0.8538 0.8445 0.8228 0.92 

Model#3 0.8324 0.8119 0.8089 0.8156 0.9 0.8611 0.837 0.872 0.8445 0.92 

Model#4 0.833 0.8 0.7995 0.7992 0.9 0.8733 0.8246 0.8713 0.8713 0.94 

           

 

Table 4– Best performance results of all models 

 

Model Accuracy Precision Recall f1 

score 

AUC 

#1 0.9286 0.8789 0.8557 0.8543 0.97 

#2 0.9228 0.8928 0.8818 0.880 0.96 

#3 0.9247 0.9224 0.9213 0.9212 0.98 

#4 0.9039 0.8918 0.8917 0.8918 0.96 

      

 

The best results of all the models after tuning hyper-parameters are summarized in Tab le 4 for 1k epochs. This shows that 

the performance of all models has improved after tuning with batch normalization applied at the intermediate phase of the 

secondary stage except fully connected (dense) layers without dropout. Normalizing input layers reduces internal covariate 

shift [18] while train ing as mini-batches [19] and reduces over-fitting. The normalization of each scalar feature is 

performed independently instead of whitening the features in layer inputs and outputs together to make zero mean and the 

unity variance. This shows that increasing the epochs after tuning the model makes a predominant impact on performance 

measures. The proposed model is implemented in python3 using Tensorflow[20] and Keras library on a GPU based system 

with an Intel Core-i7 processor with 32GB RAM. 

5. CONCLUSION  

A novel native model is proposed for the classification of histopathology images. Four CNN models with different 

architectures are selected to identify the dependency of hyper-parameters in  performance optimization. Training of the 

model is performed using two stages with hyperparameters and different learning strategies. The primary stage is for model 
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parameter selection and the secondary stage is for tuning the model hyperparameters. The performance of the model is 

analyzed after tuning the hyper-parameters. The obtained values of accuracy, precision, recall, f1-score, and AUC after 

tuning show the improvement in the performance of the native model. The selection of the best model is also performed by 

analyzing different performance metrics.  Accuracy of the model for d ifferent learn ing rates is obtained and plotted which 

shows constant mode with low learning rate as the best strategy. The ROC curve for different models after training is also 

obtained. The highest AUC value yielded is 0.98 which shows the efficiency of the proposed native model as patch 

classifier in differentiating benign and malignant patches. From the results ,  the model#3 outperforms other models when 

all the performance metrics are considered. A significant difference in performance is obtained after tuning all the models 

under consideration. The saved model with optimized parameters in '.h5' format can perform prediction on the 

histopathological image using any low-end computing device with minimal hardware complexity. 
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