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A B S T R A C T

The fuzzy set theory and the rough set theory are two distinct but complementary theories that deal with

uncertainty in data. The salient features of both the theories are encompassed in the domain of the fuzzy

rough set theory so as to cope with the problems of vagueness and indiscernibility in real world data. This

hybrid theory has been found to be a potential tool for data mining, particularly useful for feature

selection. Most of the existing approaches to fuzzy rough sets are based on fuzzy relations. In this paper, a

new definition for fuzzy rough sets in an information system based on the divergence measure of fuzzy

sets is introduced. The properties of the fuzzy rough approximations are explored. Moreover, an

algorithm for feature selection using the proposed approximations is presented and experimented using

real data sets.

� 2018 Elsevier B.V. All rights reserved.
1. Introduction

One of the greatest challenges faced by the present information
age is the extraction of useful knowledge from a vast amount of
raw data. The data mining tools and techniques are of great help in
finding and describing the structural patterns in data. The
conventional data analysis techniques such as regression analysis,
time series analysis, cluster analysis, stochastic models, etc. deal
with extracting quantitative data characteristics [1]. They cannot
handle qualitative or imperfect data or produce a qualitative
description of the dependencies in the data. Fuzzy set theory [2]
and rough set theory [3] are two formal mathematical tools which
can address the problem of vagueness, imperfection or incom-
pleteness in data. They handle two different aspects of uncertainty
namely vagueness and indiscernibility. The successful applications
of fuzzy sets and rough sets in data mining have lead to a hybrid
theory namely fuzzy rough set theory which can manage both
types of uncertainty.

Fuzzy rough set theory is found to be a very effective tool for
feature selection [4]. The task of feature selection is to remove the
irrelevant and redundant features from a data set and choose only
those features that facilitate extraction of useful knowledge. Using
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fuzzy rough feature selection it is possible to reduce discrete or real
valued noisy data without providing any additional information.
There are many different approaches to fuzzy rough sets available
in the literature. Most of the definitions are based on fuzzy
relations [5–9]. In this paper the fuzzy rough lower and upper
approximations of a fuzzy set in a fuzzy information system are
defined using the divergence measure of fuzzy sets. Divergence
measures are fuzzy measures that express the extent to which two
fuzzy sets differ from each other. The properties of the proposed
approximations are explored. Further, an algorithm for feature
selection using the fuzzy positive region is presented and
experimented with real data sets.

The rest of the paper is organized as follows: Section 2 gives a
brief review of the existing fuzzy rough set models and
applications to feature selection. The concept of divergence based
fuzzy rough sets in a fuzzy information system are introduced in
Section 3 and their properties are studied. Section 4 provides a
feature selection technique using the fuzzy positive region in the
proposed approach and the process is illustrated with an example.
The results obtained on experimentation of the proposed method
with real data sets are discussed in Section 5. The conclusion and
future work are given in Section 6.

2. Related work

In this section, some preliminary definitions and a brief review
of the different approaches to fuzzy rough set theory existing in the
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literature are presented. The basic notions of fuzzy set theory and
rough set theory as described in [10,12] respectively, are followed
throughout this paper.

2.1. Divergence measure

Let FðUÞ be the family of all fuzzy sets on U. Then a function
d : FðUÞ � FðUÞ!R is a divergence measure [11] if and only if
8A;B2FðUÞ
1. d
(A, B)=d(B, A)

2. d
(A, A)=0

3. m
ax{d(A[C, B[C), d(A\C, B\C)}�d(A, B)

2.2. Fuzzy rough sets

Fuzzy rough sets encapsulate the related but distinct concepts
of vagueness and indiscernibility. A fuzzy rough set consists of a
pair of fuzzy membership functions which correspond to the fuzzy
lower and upper approximations of a fuzzy set in a fuzzy
approximation space. A fuzzy approximation space is a pair (U,
R), where U is a non-empty set of objects and R is a fuzzy
equivalence relation. The first attempt to define fuzzy rough sets in
a fuzzy approximation space was done by Nakamura [5]. He
defined the lower and upper approximations of a fuzzy set A on U

as the fuzzy sets on U given by

m
RðAÞðxÞ ¼ inf

Rðx;yÞ�a
mAðyÞ (1)

mR̄ðAÞðxÞ ¼ sup
Rðx;yÞ�a

mAðyÞ (2)

respectively. Dubois and Prade [6] defined fuzzy rough approx-
imations as

m
RðAÞðxÞ ¼ inf

y2U
maxð1� Rðx; yÞ;mAðyÞÞ (3)

mR̄ðAÞðxÞ ¼ sup
y2U

minðRðx; yÞ;mAðyÞÞ (4)

Since then, intensive studies have been conducted on fuzzy rough
sets both in theoretical and application point of view and several
extensions and generalizations are proposed [7–9]. A detailed
study of the different approaches to fuzzy rough set was done by
D’eer et al [14].

2.3. Feature selection using fuzzy rough sets

Since its inception, several researchers have attempted to apply
fuzzy rough set theory to feature selection. Many of them used the
dependency degree, which is a measure of how well an attribute
set can discern between elements as a criteria for feature selection.
Whichever definition of fuzzy rough set is used, the dependency
degree is defined using the fuzzy cardinality of the fuzzy positive
region. A number of papers were authored by Jensen and Shen [15–
19] in which the development of a fuzzy rough quick reduct
algorithm was outlined. The attribute set having the maximum
dependency degree is selected. Another approach to fuzzy-rough
feature selection is to use fuzzy entropy as a criteria for feature
selection [20]. Algorithms based on discernibility matrix to
compute the attribute reducts are also proposed by many authors
[19,21]. Fuzzy boundary region based feature selection methods
are also available in the literature [19,22].
3. Divergence based fuzzy rough sets

Let (U, C, D) be a fuzzy information system, where U is a non-
empty set of objects, C is the set of conditional attributes each of
which is a fuzzy set on U and D is the set of decision attributes. Each
x2U can be associated with a fuzzy set on P�C, with membership
function

mP
x ðaÞ ¼ f

aðaÞ; if a2 P;
0; otherwise;

(5)

Unless there is no ambiguity, the above fuzzy set may be denoted
by mx.

Let d(A, B) be a normalized divergence measure of fuzzy sets.
Then, d(mx, my) measure the extent to which the fuzzy set mx on P

differ from the fuzzy set my on P. In other words, d(mx, my)
expresses the dissimilarity between the objects x and y, with
respect to the given set of fuzzy conditional attributes, whereas
R(x, y) expresses the indiscernibility between x and y. Thus a
natural procedure to define divergence based fuzzy rough
approximations is to replace R(x, y) by 1�d(mx, my).

Definition 3.1. The fuzzy rough lower and upper approximations
of a fuzzy set A on U with respect to the divergence measure d are
defined 8x2U as

m
dðAÞðxÞ ¼ inf

y2U
max½dðmx;myÞ;mAðyÞ� (6)

md̄ðAÞðxÞ ¼ sup
y2U

min½1� dðmx;myÞ;mAðyÞ� (7)

respectively.
The following proposition asserts that the above defined

approximations are fuzzy sets on U.

Proposition 3.1. The divergence based fuzzy rough lower and upper

approximations of a fuzzy set on an information system are fuzzy sets

on U.

Proof. Both mA(y) and d(mx, my)2[0, 1], 8x, y2U. Hence, max[d(mx,
my), mA(y)]2[0, 1]. Using Eq. (6), m

dðAÞðxÞ 2 ½0;1�; 8 x2U. Similarly
md̄ðAÞðxÞ 2 ½0;1�; 8 x2U.

The properties of the proposed approximations are expressed in
the next two theorems.

Theorem 3.1. The general properties of the fuzzy rough lower and

upper approximations with respect to d are as follows:
1. d
ðfÞ ¼ f ¼ d̄ðfÞ

2. d
ðUÞ ¼ U ¼ d̄ðUÞ

3. d
ðAÞ�A� d̄ðAÞ, 8A2FðUÞ

4. A
�B) dðAÞ� dðBÞ and d̄ðAÞ� d̄ðBÞ

5.
 dðâÞ ¼ â ¼ d̄ðâÞ, 8a2[0, 1]

C

6. ð
dðA

CÞÞ = d̄ðAÞ, 8A2FðUÞ
C

7. ð
d̄ðACÞÞ ¼d ðAÞ, 8A2FðUÞ

[52_TD$DIFF]Proof.
1. m
f(x) = 0, d(mx, mx) = 0, 8x 2 U)max[d(mx, mx), mf(x)] = 0

)mdðfÞðxÞ ¼ infy2Umax½dðmx;myÞ;mfðyÞ� ¼ 0.

Also, min[1 � d(mx, mx), mf(x)] = 0, 8x 2 U.

[55_TD$DIFF]So, m
dðfÞðxÞ ¼ supy2Umin½dðmx;myÞ;mfðyÞ� ¼ 0.

[56_TD$DIFF]Thus, dðfÞ ¼ f ¼ dðfÞ

2. m
U(x) = 1, 8x 2 U)max[d(mx, my), mU(y)] = 1, 8y 2 U.

[57_TD$DIFF]Therefore, mdðUÞðxÞ ¼ infy2Umax½dðmx;myÞ;mUðyÞ� ¼ 1.

Also, min[1 � d(mx, my), mU(y)] = 1 � d(mx, my).
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[59_TD$DIFF]Hence, m
dðUÞðxÞ ¼ supy2Uð1�dðmx;myÞÞ. Since d(mx, mx) = 0,

m
dðUÞðxÞ ¼ 1. Thus, dðUÞ ¼ U ¼ dðUÞ
3. S
ince d(mx, mx) = 0, max[d(mx, mx), mA(x)] = mA(x), 8x 2 U.

[62_TD$DIFF]Hence, mdðAÞðxÞ�mAðxÞ, 8x 2 U.

[63_TD$DIFF]Also, min[1 � d(mx, mx), mA(x)] = mA(x).

[64_TD$DIFF]So, m
dðAÞðxÞ�mAðxÞ, 8x 2 U.

[56_TD$DIFF]Thus, dðAÞ�A� dðAÞ, 8A2FðUÞ.

4. B
y definition, if A � B, then mA(y) �mB(y), 8y 2 U.

[55_TD$DIFF]So, max[d(mx, my), mA(y)] �max[d(mx, my), mB(y)] and

[65_TD$DIFF]min[d(mx, my), mA(y)] �min[d(mx, my), mB(y)], 8x 2 U.

[66_TD$DIFF]It follows that mdðAÞðxÞÞ�mdðBÞðxÞ and m
dðAÞðxÞ�m

dðBÞðxÞ.
[56_TD$DIFF]Thus dðAÞ� dðBÞ and dðAÞ� dðBÞ
5. U
sing property (3), dðâÞ� â. Also, mâðyÞ ¼ a, 8y 2 U.

[62_TD$DIFF]Hence, max½dðmx;myÞ;mâðyÞ� �a, 8y 2 U.

[55_TD$DIFF]So, mdðâÞðxÞ ¼ infy2Umax½d�ðmx;myÞ;mâðyÞ� �mâðxÞ.
[57_TD$DIFF]Therefore, â� dðâÞ. Thus dðâÞ ¼ â ¼ dðâÞ, 8a 2 [0, 1] The

proofs of properties (6) and (7) are straight forward.

Theorem 3.2. The algebraic properties of the fuzzy rough lower and

upper approximations with respect to d are given below:

1. d
ðA\BÞ ¼d ðAÞ \ dðBÞ

2. d
¯ðA\BÞ� d̄ðAÞ \ d̄ðBÞ

3. d
ðA[BÞ� dðAÞ [ dðBÞ

4. d
¯ðA[BÞ ¼ d̄ðAÞ [ d̄ðBÞ

5. d
¯ðA\ âÞ ¼ d̄ðAÞ \ â

6. d
ðA[ âÞ ¼d ðAÞ [ â

[69_TD$DIFF]Proof.
mdðA\BÞðxÞ ¼ infy2Umax½dðmx;myÞ;mðA\BÞðyÞ�

¼ infy2Umax½dðm ;m Þ;minðm ðyÞ;m ðyÞ�
1.
x y A B

¼ infy2Uminfmax½dðmx;myÞ;mAðyÞ�;max

½dðmx;myÞ;mBðyÞ�g
¼minfinfy2Umax½dðmx;myÞ;

mAðyÞ�; infy2Umax½dðmx;myÞ;mBðyÞ�g

¼ mdðAÞ \ dðBÞðxÞ; 8 x2U:

Therefore, dðA\BÞ ¼ dðAÞ \ dðBÞ
2.

m

dðA\BÞðxÞ ¼ supy2Umin½1�dðmx;myÞ;mðA\BÞðyÞ�

¼ supy2Umin½1�dðmx;myÞ;minðmAðyÞ;mBðyÞ�
¼ supy2Uminfmin½1�dðmx;myÞ;

mAðyÞ�;min½1�dðmx;myÞ;mBðyÞ�g�min
fsupy2Umin½1�dðmx;myÞ;mAðyÞ�;
supy2Umin½1�dðmx;myÞ;mBðyÞ�g

¼ m
dðAÞ \ dðBÞðxÞ; 8 x2U:

Therefore, dðA\BÞ� dðAÞ \ dðBÞ

mdðA[BÞðxÞ ¼ infy2Umax½dðmx;myÞ;mðA[BÞðyÞ�

¼ infy2Umax½dðmx;myÞ;maxðmAðyÞ;mBðyÞ�

¼ infy2Umaxfmax½dðmx;myÞ;mAðyÞ�;
3.
 max½dðmx;myÞ;mBðyÞ�g

�maxfinfy2Umax½dðmx;myÞ;mAðyÞ�;

infy2Umax½dðmx;myÞ;mBðyÞ�g

¼ mdðAÞ [ dðBÞðxÞ; 8 x2U:
Therefore, dðA[BÞ� dðAÞ [ dðBÞ.
m
dðA[BÞðxÞ ¼ supy2Umin½1�dðmx;myÞ;mðA[BÞðyÞ�

¼ supy2Umin½1�dðmx;myÞ;maxðmAðyÞ;mBðyÞ�
¼ sup maxfmin½1�dðm ;m Þ;m ðyÞ�;
4.

y2U x y A

min½1�dðmx;myÞ;mBðyÞ�g
¼maxfsupy2Umin½1�dðmx;myÞ;mAðyÞ�;
supy2Umin½1�dðmx;myÞ;mBðyÞ�g
¼ m

dðAÞ [ dðBÞðxÞ; 8 x2U:
Therefore, dðA[BÞ ¼ dðAÞ [ dðBÞ

5. m
dðA\ âÞðxÞ ¼ supy2Umin½1�dðmx;myÞ;mðA\ âÞðyÞ�
¼ supy2Umin½1�dðmx;myÞ;minðmAðyÞ;aÞ�
¼ supy2Uminfmin½1�dðmx;myÞ;mAðyÞ�;ag
¼ minfsupy2Umin½1�dðmx;myÞ;mAðyÞ�;ag
¼ m

dðAÞ \ â
ðxÞ; 8 x2U:
Therefore, dðA\ âÞ ¼ dðAÞ \ â
mdðA[ âÞðxÞ ¼ infy2Umax½dðmx;myÞ;mðA[ âÞðyÞ�

¼ infy2Umax½dðm ;m Þ;maxðm ðyÞ;a�

6.
x y A

¼ infy2Umaxfmax½dðmx;myÞ;mAðyÞ�;a�g
¼ maxfinfy2Umax½dðmx;myÞ;mAðyÞ�;aÞ�g
¼ mdðAÞ [ âðxÞ; 8 x2U:
Therefore, dðA[ âÞ ¼ dðAÞ [ â

The following theorem discusses the monotonic property of the
divergence based fuzzy rough approximations with respect the
divergence measures.

Theorem 3.3. If d1 and d2 are two divergence measures of fuzzy sets

such that d1ðA;BÞ � d2ðA;BÞ; 8A;B2FðPÞ, then d1ðAÞ � d2ðAÞ and

d̄1ðAÞ� d̄2ðAÞ.

Proof. Given that d1ðA;BÞ � d2ðA;BÞ; 8A;B2FðPÞ.

So, d1(mx, my)�d2(mx, my), 8x, y2U.
Hence, max[d1(mx, my), mA(y)]�max[d2(mx, my), mA(y)], 8y2U.
By the property of infimum, d1ðAÞ � d2ðAÞ.
Also, 1�d1(mx, my)�1�d1(mx, my).
Hence, min[1�d1(mx, my), mA(y)]�min[1�d2(mx, my), mA(y)],

8y2U.
By the property of supremum, d

1

ðAÞ� d
2

ðAÞ.

4. Feature selection using fuzzy positive region

In this section, an application of divergence based fuzzy rough
sets to feature selection is described. An algorithm using the fuzzy
positive regions of the decision classes is presented.

Let (U, C, D) be a fuzzy information system, where U={x1, x2, . . .,
xn}, C={a1, a2, . . ., am} and D={d1, d2, . . ., dk}. If the conditional
attributes are real valued functions on U, then they can be
converted into fuzzy sets on U by applying the transformation
a	i ðxÞ ¼ x�a

b�a where, a=minx2Uai(x) and b=maxx2Uai(x).

Definition 4.1. Let d(A, B) be a normalized divergence measure of
fuzzy sets. The divergence matrix of U with respect to P�C is the n�n

matrix DP ¼ ½dij�n�n
, whose entries are given by

dij ¼ dðmxi
;mx j
Þ; i; j ¼ 1;2; . . . ;n (8)

The decision attributes di may be crisp or fuzzy. The membership
functions of the decision classes of crisp attributes are the
characteristic functions of the corresponding equivalence classes.
The membership functions of the fuzzy decision attributes act as
the membership functions of their decision classes.

Definition 4.2. The fuzzy positive region with respect to P�C is the
fuzzy set POSP on U given by

mPOSP
ðxÞ ¼ sup

X 2U=D
m

dPðXÞðxÞ (9)
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where m
dPðXÞ
ðxÞ is given by ‘‘Eq. (6)’’.

Definition 4.3. The degree of dependency of D on P�C is defined as

gPðDÞ ¼
P

x2UmPOSP
ðxÞ

jUj (10)

Algorithm 4.1. The algorithm for finding the dependency measure
of D with respect to P�C.
1.
Table 1
Fuzzy information

Object a1

1 0.0

2 0.0

3 0.1

4 0.0

5 0.0

6 0.1

7 0.2

8 0.2
Input the decision table and P�C
2.
 Find the decision classes U/D={X1, X2, . . ., Xr}
3.
 Find the divergence matrix DP
4.
 For l=1, 2, . . ., r, i=1, 2, . . ., n, compute m
dPðXlÞðxiÞ ¼

infx j 2Umax½dij;XlðyÞ�

5.
 Compute mPOSP

ðxiÞ ¼ suplmdPðXlÞðxÞ for each xi2U
6.
 Compute gPðDÞ ¼
P

xi 2U
mPOSP

ðxiÞ

jUj .
7.
 Return gP(D)
Algorithm 4.2. The following is the algorithm to find the set of
features to be selected for the decision table reduction.
1.I
nput the fuzzy decision system
2.I
nitialise C {a1, a2, . . ., am}, R=;

3.F
or each ai2C�R, generate the divergence matrix with respect to

R[{ai}
4.C
alculate the dependency degree gR[faigðDÞ for each ai2C�R
5.F
ind the attribute ak that makes gR[faigðDÞ the maximum.
6.W
hen gR[faigðDÞ>gRðDÞ, C C�R and R R[{ak}
7.R
eturn R

4.1. Example

Consider the fuzzy decision system given in Table 1, which is a
part of the ser Knowledge Modelling Data taken from UCI
repository of databases [23]. All the conditional attributes are
fuzzy sets. There are 5 fuzzy conditional attributes and one crisp
decision attribute. The description of the attributes are

a1 – STG (The degree of study time for goal object materials)
a2 – SCG (The degree of repetition number of user for goal object
materials)
a3 – STR (The degree of study time of user for related objects
with goal object)
a4 – LPR (The exam performance of user for related objects with
goal object)
system.

a2 a3 a4 a5 d

8 0.08 0.1 0.24 0.9 High

6 0.06 0.05 0.25 0.33 Low

0.1 0.15 0.65 0.3 Medium

8 0.08 0.08 0.98 0.24 Low

9 0.15 0.4 0.1 0.66 Medium

5 0.02 0.34 0.4 0.01 Very low

4 0.75 0.32 0.18 0.86 High

76 0.255 0.81 0.27 0.33 Low
a5 – PEG (The exam performance of user for goal objects)
d� UNS (The knowledge level of user)

The attribute UNS is the decision attribute. The values of the
attributes corresponding to 8 objects belonging to different classes
are considered. Here the divergence measure [11]

dðA;BÞ ¼ sup
a2 P
jAðaÞ � BðaÞj (11)

is used.
There are 4 decision classes namely X1={1, 7}, X2={2, 4, 8}, X3={3,

5} and X4={6} corresponding to the decision attribute values high,
low, medium and very low respectively. Also,

dðmx;myÞ ¼ sup
a2 P
jmxðaÞ �myðaÞj (12)

At first the dependency values of the single feature subsets are to
be determined. The divergence matrix corresponding to the
attribute ‘a1’ is presented in Table 2.

The divergence based fuzzy rough lower approximations
of the decision classes are computed using the formula,
m

dðXlÞðxiÞ ¼ infx j 2Umax½dij;mAðyÞ�. Then the fuzzy positive region,
mPOSD

ðxiÞ ¼ suplmdðXlÞðxiÞ is determined. The values are given in
Table 3.

Therefore, the dependency degree of D on the attribute ai is
given by gaðDÞ ¼

P
i
mPOSD

ðxiÞ
n ¼ 0:172

8 .
Similarly the dependency degree of D on attributes a2, a3, a4 and

a5 are computed as ga2
ðDÞ ¼ 0:75

8 , ga3
ðDÞ ¼ 0:65

8 , ga4
ðDÞ ¼ 0:91

8 and
ga5
ðDÞ ¼ 1:02

8 respectively. The highest value is ga5
ðDÞ and hence

the attribute a5 is selected.
Now the dependency degrees of each attributes in combination

with the selected attribute a5 are to be determined, and the pair
with highest dependency value is to be selected. For this, first
consider the pair {a4, a5}.

The divergence matrix corresponding to the attribute set {a4,
a5} is computed as given in Table 4.

The values of the divergence based fuzzy rough lower
approximations of each of the decision classes with respect to
{a4, a5} and the positive region are given in Table 5.

Therefore, the dependency degree of D on the attribute set {a4,

a5} is given by gfa4;a5gðDÞ ¼
P

i
mPOSD

ðxiÞ
n ¼ 2:19

8 .

Similarly, the dependency degree of D on attribute sets are
computed as gfa3 ;a5gðDÞ ¼

1:61
8 , gfa2 ;a5gðDÞ ¼

1:535
8 and

gfa1 ;a5gðDÞ ¼
1:186

8 . Thus the highest value is gfa4 ;a5gðDÞ and hence
the attribute set {a4, a5} is selected.

In a similar way, the different dependency degrees are
calculated as gfa3 ;a4 ;a5gðDÞ ¼

2:34
8 , gfa2 ;a4 ;a5gðDÞ ¼

2:56
8 and

gfa1 ;a4 ;a5gðDÞ ¼
2:19

8 . Thus the highest value is gfa2 ;a4 ;a5gðDÞ and
hence the attribute set {a2, a4, a5} is selected.

Now the dependency degree of sets in the next level are
gfa2 ;a3 ;a4 ;a5gðDÞ ¼

2:77
8 and gfa1 ;a2 ;a4 ;a5gðDÞ ¼

2:56
8 . Thus the highest

value is gfa2 ;a3 ;a4 ;a5gðDÞ and hence the attribute set {a2, a3, a4, a5} is
selected. The dependency degree of the whole set C is
Table 2
Divergence matrix w.r.t. {a1}.

D 1 2 3 4 5 6 7 8

1 0 0.02 0.02 0 0.01 0.07 0.16 0.196

2 0.02 0 0.04 0.02 0.03 0.09 0.18 0.216

3 0.02 0.04 0 0.02 0.01 0.05 0.14 0.176

4 0 0.02 0.02 0 0.01 0.07 0.16 0.196

5 0.01 0.03 0.01 0.01 0 0.06 0.15 0.186

6 0.07 0.09 0.05 0.07 0.06 0 0.09 0.126

7 0.16 0.18 0.14 0.16 0.15 0.09 0 0.036

8 0.196 0.216 0.176 0.196 0.186 0.126 0.036 0
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gfa1 ;a2 ;a3;a4 ;a5gðDÞ ¼
2:77

8 . Hence there is no increase in dependency
by adding a1. Thus the feature set selected is {a2, a3, a4, a5}.

4.2. Algorithmic complexity

For a data set having n features, the dependency function is
evaluated n times corresponding to each single attribute. After
selecting the feature with highest dependency value, the process is
repeated by considering pairs of the selected feature with the
remaining (n�1) features. In the worst case, this process is
terminated when the whole feature set has been exhausted.
Therefore, the maximum number of evaluations of the dependency
function for a particular data set is n+(n�1)+(n�2)+
 
 
+1=(n2+n)/2.
But in many cases the process will be terminated when a reduct
having a smaller number of features with the same dependency
value as that of the entire feature set is reached. Thus, the
Table 6
Dataset description.

Dataset Objects Features

Olitos [26] 120 26

Sonar – mines/rocks 208 61

Glass 214 10

Knowledge [23] 258 6

Ionosphere 351 35

Musk 476 166

Energy efficiency [27] 768 10

Plant leaves [28] 1600 65

Steel plate faults 1941 28

Segment 2310 20

Statlog 4435 37

Wine quality – white [29] 4898 12

Table 3
Fuzzy positive region w.r.t {a1}.

d 1 2 3 4 5 6 7 8

X1 0 0 0 0 0 0 0.036 0

X2 0 0.02 0 0 0 0 0 0.036

X3 0 0 0.02 0 0.01 0 0 0

X4 0 0 0 0 0 0.05 0 0

POSa1
0 0.02 0.02 0 0.01 0.05 0.036 0.036

Table 4
Divergence matrix w.r.t {a4, a5}.

D 1 2 3 4 5 6 7 8

1 0 0.57 0.6 0.74 0.24 0.89 0.06 0.57

2 0.57 0 0.4 0.73 0.33 0.32 0.53 0.02

3 0.6 0.4 0 0.33 0.55 0.29 0.56 0.38

4 0.74 0.73 0.33 0 0.88 0.58 0.8 0.71

5 0.24 0.33 0.55 0.88 0 0.65 0.2 0.33

6 0.89 0.32 0.295 0.58 0.65 0 0.85 0.32

7 0.06 0.53 0.56 0.8 0.2 0.85 0 0.053

8 0.57 0.02 0.38 0.71 0.33 0.32 0.53 0

Table 5
Positive region w.r.t {a5, a1}.

d 1 2 3 4 5 6 7 8

X1 0.24 0 0 0 0 0 0.2 0

X2 0 0.32 0 0 0 0 0 0.32

X3 0 0 0.29 0 0.2 0 0 0

X4 0 0 0 0 0 0.29 0 0

POSfa4 ;a5g 0.24 0.32 0.29 0.33 0.2 0.29 0.2 0.32
maximum time complexity of the proposed algorithm is o(n2).
Also, at the initial stage, n divergence matrices are computed and
stored corresponding to each individual features. The space for all
the subsequent matrices and local variables can be reused. Thus,
the space complexity of the proposed algorithm is o(n).

5. Experimentation

This section presents the results from the experimental study of
the feature selection method using the divergence based fuzzy
positive region. Eleven data sets from the UCI Machine Learning
repository [24] and one from the website of Milano Chemometrics
and QSAR Research Group [25] have been used for the
experimentation. The data sets consist of real valued features
ranging from 5 to 166 in number, objects ranging from 120 to
4898 and decision classes ranging from 2 to 34. The description of
the data sets is given in Table 6.

The data pre-processing step includes conversion of the real
valued features to fuzzy ones. The dependency values correspond-
ing to each single attribute sets are computed first and the
attribute with maximum dependency value is selected. Then, pairs
of the selected feature with the remaining features are considered
and the pair having the maximum value of dependency is selected.
This process is repeated unless there is no further increase in the
dependency value. In the worst case, the process is terminated
when the whole feature set has been exhausted. The feature
selection process is conducted using an OCTAVE program and the
results are presented in Table 7.

It is clear from the data presented in Table 7, that the size of the
feature set is reduced significantly in almost all the cases. The
algorithm converges even for data sets consisting of around
5000 objects. The run time given includes time taken for the data
pre-processing step also. However, the time taken to run the
program increases considerably with increase in the number of
objects and the number of features. Using effective optimization
Decision classes Description

4 Chemical analysis

2 Mine/rock recognition

7 Glass identification

4 Knowledge level classification

2 Structure analysis

2 Musk/non musk classification

2 Energy analysis

34 Plant leaves identification

7 Steel plates fault diagnosis

7 Image segmentation

7 Landsat satellite data

7 Wine quality analysis

Table 7
Experimental results.

Dataset Objects Features Reduct Dependency Run time(s)

Olitos 120 26 17 0.240 19.677

Sonar – mines/rocks 208 61 31 0.341 113.647

Glass 214 10 7 0.098 16.878

Knowledge 258 6 5 0.129 11.872

Ionosphere 351 35 29 0.414 156.838

Musk 476 166 79 0.843 2465.641

Energy efficiency 769 10 4 0.374 154.942

Plant leaves 1600 65 40 0.032 16063.745

Steel plates faults 1941 28 15 0.206 3640.639

Segment 2310 20 11 0.363 3638.397

Statlog 4435 37 22 0.103 24838.111

Wine quality – white 4898 12 10 0.05 20956.464
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strategies and some programming techniques the run times may
be reduced further.

6. Conclusion

The fuzzy rough set theory has been found to be a very
effective tool for data mining, especially for feature selection. In
this paper, the fuzzy rough lower and upper approximations of a
fuzzy set in a fuzzy information system have been defined using
the divergence measure of fuzzy sets. Divergence measures are
fuzzy measures that express the extent to which two fuzzy sets
differ from each other. The properties of the proposed approx-
imations were examined. Further, an algorithm for feature
selection using the fuzzy positive region has been presented.
The proposed method was illustrated by taking a part of the ser
Knowledge Modelling Data from UCI repository of databases. To
support the performance of the feature selection method using
the divergence based fuzzy positive region, an experimental
study was conducted. The results have shown that the number of
selected features in each case was considerably less than the
number of features in the original data sets. Future work includes
optimization of the algorithm so as to reduce the run times. Also,
the classification accuracy for the reduced data sets needs to be
studied. Further, a comparison of the method using different
divergence measures is to be done.
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